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Abstract

Conditioned taste aversion (CTA) is one of several behaviors which has been

suggested as a putative measure of motion sickness in rats. A review is made of

studies which have used surgical disruption of area posn'ema or the vagus nerve to
investigate whether CTA and vomiting induced by motion may depend on
common neuralpathwaysorstructures.When thechemoreceptivefunctionofthe

areapostrema(Ado)isdestroyedbycompleteablation,ratsdevelopCTA andcats

andmonkeysdevelopCTA andvomit.Thus theAP isnotcruciallyinvolvedin

eitherCTA orvomitinginducedbymotion.However.aftercompletedenervation

ofthestomachorafterlabyrinthectomyratsdonotdevelopCTA when modon is

usedastheunconditionedstimulus.Studiesofbrainstemprojectionsofthevagus

nerve, the area postrema, the periaqueductal grey, and the vestibular system are
used as the basis for speculation about regiorts which could mediate both motion-
induced vomiting and behavioral food aversion.

Introduction

Animals commonly avoid the ingestion of foods treated with non-lethal doses of poison. The

laboratory study of this phenomenon has led to the development of specialized proc_ures
for investigating the role learning plays in this behavioral aversion to poisoned food. These

procedures commonly are referred to as the 'conditioned .taste aversion paradigm'. In typical

applications of this paradigm a previously novel food is ingested just prior to poisoning. This
'pairing' of food with the effects of poisoning results in a strong, long-lasting avoidance of

Keywords:. conditioned taste aversion, vomiting, area postmma, vagus nerve., reticular formazion.
vestibular system, peri_ueductal grey, nucleus tractus solitarius
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Neural Structures

,,,j

Surgical lesions have been used in numerous experiments to investigate the neural
structures crucial to CTA and vomiting. Usually, such studies have been used to investigate
the effects of lesions on vomiting or on CTA independently, but not upon both responses
simultaneously. Many of these studies have focused upon the AP and the vagus nerve. Thus,
in independent studies it has been shown that the AP is critically involved in the emetic and
in the conditioning efficacy of certain toxins. These effects commonly ,_'e attributed to a
chemoreceprive function of the AP (Coil and Norgren, 1981; Carpenter et al., 1983; Borison
et al., 1984). In addition, involvement of the vagus nerve has been shown in both vomiting
(Borison, 1952) and CTA (Coil et al., 1978; Rabin et al., 1985) induced by intra-gastric
copper sulfate.

Studies conducted as direct examinations of the role of the AP and the vagus nerve in

motion-induced CTA and as simultaneous eval_tions of the relationship been CTA and

vomiting have occurred only recently. It has been known for some time that rotation could
be used as a US to induce CTA in rats (Braun and Mctntosh, 1973; Green and Rachlin, 1973).

Because the AP had long been thought necessary for motion-induced vomiting in dog, cat,
and monkey, and because the AP was known to be involved critically in the induction of CTA

by certain toxins and radiation, the role of the AP in motion-induced CTA was investigated
f_rst. Ossenkopp (1983) reported that rats with the AP ablated formed a stronger CTA than
unoperated rats when saccharin was paired with motion. He proposed that this enhanced CTA
could have occurred because ablation of AP influenced the intake of the saccharin (a preferred
fluid) which was used as a CS. A second study (Sutton et al., in press) also demonstrated that
motion can be used to induce CTA in rats with the Ap ab/,3_tcd,but did not find enhanced CTA

in ablated rats when a cider vinegar solution was used as the CS. In these two studies
conditioning failed to occur when blood-borne toxins were used as the US (scopolamine
methyle nitrate and lithium chloride, respectively), thereby indicating that the chemorecep-
rive function of the AP was eliminated by the ablations, Thus, in rats, the AP apparently is
not a chemoreceptive site of action for a neurohumoral substance critical to motion-induced
CTA.

Recent ablation studies have demonstrated clearly that the AP is not required for motion-
induced vomiting in cats (Corcoran et al., 1985; Borison and Borison, 1986) or squirrel
monkeys CEllar et al., 1986; Wi]pizeski et al., 1986). Vomiting and CTA have been assessed
in the same animals after ablation of the AP in three experiments. Afmr ablation of the AP

in cats, neither vomiting nor CTA was produced by a dose of xylazine which reliably
produces vomiting in cats (Corcoran et al., 1985). Vertical linear acceleration did produced
vomiting on some trials, and CTA was produced when this motion was used as the US with
these same AP-ablated cats. In squirrel monkeys with AP ablated, CTA was not produced by
an intraperitoneal injection of LiCl, a chemical which requires an intact AP to produce CTA
in rats (Ritter et al., 1980; Sutton et al., in press). However, these same monkeys vomited in
some tests when exposed to vertical axis rotation, and CTA was produced by this motion
stimulation ('Elfar et al., 1986), In the second study with squirrel monkeys, concUdoned
aversion was not investigated with chemical toxicosis, but rotation did produce CTA in
monkeys with the AP ablated (Wilpizeski et al., 19863. These studies provide additional
support for an important chemoreceptive function of the AP in both emesis and CTA induced
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by certain chemicals, and they simultaneously demonstrate that the emetic and taste aversion-

producing properties of motion are not crucially dependent upon this chemoreceptive
function of the AP.

The effect of disruption of the vagus nerve upon motion-induced CTA has been reported
only in rats ('Fox and McKenna, in press). In this experiment gastric denervation was accom-

plished by sectioning the anterior branch of the vagus distal to the hepatic branch, ligating
and sectioning the posterior branch and the gastric artery proxima/to the esophagogasmc

junction and then sectioning vagal branches in the reg'Jon of the cardiac sphincter and along
the greater curvature of the stomach. After this se!ective gastric vagotomy CTA was not

produced when vertical axis rotation was the US. Animals in a control group subjected to
ligation of the gastric artery and posterior vagus deve!oped a CTA equal in magnitude to the

aversion developed in unoperated animals. Becuase of this effect, it was proposed that either

the anterior vagus, the sympathetic fibers, or both are crucial for motion to be an effective US

for CTA in rats. Thus, while ablation of the AP has no apparent effect upon CTA produced

by motion in rats, cats, or squirrel monkeys, the efficacy of rotation as a US for CTA in r_ts

is disrupted after complete gastric denervarion. The possibility that vagaJ pathways might be _
shared by CTA and vomiting could not be addressed directly in this expC"ih1_ent b_ause mrs
are incapable of vomiting. _= _ ........ - ........ .......... _ -! .......

These investigations have shown that the _ plays no criticz/role in motion-induced

CTA or vomiting. In some studies it was shown that motion produced both vomiting and CTA
after the chemosensory function of the AP was eliminated by ablation. Thus, as has been

asserted for vomiting (Borison, 1985), CTA induced by motion apparendy does not depend - .

upon a humoral factor acting on the AP. The question of whetlSerZ_l'A and vomiting depend -

upon common neural structures remains unanswered by these studies bemuse both responses
were unaffected by abladon of the AP.

Inferences regarding a role for gastric innervation can be only speculative at this time.

Gastric denervation eliminates the efficacy of motion as a US for CTA in the rat, but the

processes underlying this effect are unclear. Both afferent and efferent vaga] functions were
eliminated by gastric denervation, and secondary effects of this disruption on the CNS were

not assessed. In addition, the magnitude of CTA produced by motion is reduced gready when
the labyrinth is destroyed in rats 0-'lardey, 1977). Thus, both labyrinthine and gasa'ic systems
contribute critically to the support of CTA induced by motion, and neither vestibular nor

gastric inputs to the CNS alone is adequate for the production of C'TA when motion in the US

in the mr. Because CTA can be produced by motion only when both systems are intact, it

seems that vagal and labyrinthine circuity either must converge in some CNS regSon which
is necessary for the support of motion.induced C'I'A, or alternatively, some form of

modulation occurs between the two systems. Caloric stimulation of the_n_d_ m'ifi'Hu_tl"_s......

the rote of efferent activity in the vagus nerve of rats (Niijim_ aT., 1988), and_ irlm_ g_s_c _ ,
emptying is delayed and duodenal motility is reduced by vesia-b-ul-arstimiaIti_oH-('Thompson
et at., 1982), further indicating interaction of the two systems.

A CNS loca/e where vagal and vestibular fibers may interact is unknown. Vagal afferents
project to the subnucteus gelatinosus, the medial NTS, and the commissural NTS (Leslie et
al;, 1982; Shapiro and Miselis, i985). Dendrites of dorsa/motor nucleus neurons have been

reported to be co-diswibuted with these afferent proje_iJons _.ndto penetrate the ependyma '-
of the fourth ventricle and the ventral aspect of the AP. This co-distribution of afferent and
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efferent componens of the gastric vagus has been suggesu_cl as a possibIe locale for

monosynaptic vagovagal interactions (Shapiro and Miselis, 1985). It has also be_il shown

that cells in the medial half of the medullary parvicellular reticular formation (PCR_ project

to the caudal solitary and vagal nuclei in the cat ('Mehler, 1983). The PCR.F is a ske of origin

of efferent fibers projecting to the vestibular sensory epithelium and it has been speculated

that these efferems may conn-ibute to a vomiting trigger zonecircuit via the generation of a

mismatch signal with vestibular afferent signals (Goldberg and Femkndez, 1980; Mehler,

1983). The PCR__ also receives projections from the periaqueductal grey, a necessary

sn'ucmre for the production of CTA when morphine is the US (Blair and Amit, 1981).

Conclusions

These studies demonswate that neural fibers associated with the periaqueductal grey, the
vestibular system, the AP, and the stomach, four structures which have been demonstrated

to be important to CTA produced by various USs, are found in the NTS and PCRF. The NTS

and PCRF are characterized by complicated interconnections locally, and with higher brain
stru.cmres as well, so the neural events critical to the formation of CTA could interact in these
regions. However, specific interconnections important to such interaction have not been

identified. This area of the PCRF also is the genera/region identified as a vomiting trigger

zone (Borison and Wang. 1949; see also Miller and Wilson, 1983). Thus, neural pathways

or structures important to both CTA and vomiting could coexist in this general region.
Whether common neural pathways or a discrete nuclear group of cells co-ordinating these

two responses to motion exist remains to be demonstrated. Both responses are complex,
involving many muscular events, and it may not be possible to identify a 'neural center' co--

ordinating such responses. However, multidisciplinary research employing present techno-

Iogy for immunohistochemistry, eleca'on microscopy, eiectr0physiology, biochemisa'y, and

neuroanatomy portends the opening of new vis_,as--for_e-understanding of the neural events
underlying these behaviors.
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Abstract

Tne experiments were conducmd in anaesthetized rats. In the In'st part of the

experiments, the effect of CuSO, on the afferent activity in the gastric branch of

the vagus nerve was investig amd. Gastric perfusion of Cu$O,solution (0.04% and.

0.08%) provoked an increase in afferent activity. In the second part of the

experiments, the reflex effects of gastric perfusion of Cu.SO, solution, repetitive

stimulation of the gastric vagus nerve, arid caloric stimulation of the right

vestibular alrparams (5-18"C water) on gastzic autonomic outflow were investi-

gated. The results of these experiments showed that these three different types of

stimulation caused an inhibition in efferent activity of the gastric vagus nerve and

a slight activation of the splancknic gastric efferents. The summation of the effect

of each stimulation was also observed. These results, therefore, provick_ evidence

for a possible integrative inhibitory function of the vagal gastric center as well as

an excitatory function of gasta'ic sympathetic motoneurons in relation to motion
sickness.

Introduction

It has been generally recognized that nausea and cmesis with gastric dysfunction are the main

symptoms of space and motion sickness. It is assumed that vestibular as well as gastric

Keywords: gastric afferents, gastric efferents, vestibulo-vagal reflex, vestibulo-sympathetic reflex,

g astrosensory-ves tibular-autonomic interactions
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stimulation can be the major sources of these symptoms. It is also well known that caloric

stimuladon of the vestibular apparatus can cause emesis and nystagmic responses. Wang and
Borrison (1951) reported that the intragastric administration of copper sulfate induced emedc

responses, and that the surgical interruption of the vagi had a more profound effect on the
threshold and latency of vomiting than did sympathectomy, which caused no remarkable

changes in these parameters. They stressed that the vagal gastric afferents play a more

important role than splanchnic gastric afferents in the mediation of the gastric effects of

copper sulfate. The present experiments were designed to study the effects of individual and

combined vestibular and gastric stimulation on the reflex change in gastric autonomic

outflow. Portions of the data describing the effects of copper sulfate on the rate of afferent

discharges in the gastric branch of)he vagus nerve have been reported elsewhere ('Niijima et
aL, 1987).

Methods

Male Wistar mrs weighing 300...-4,00 g were used. Food, but not water, was removed 5

hours before the experiment. Rats were anesthetized with 700 mg/kg of arethane and 50 m g/
kg ofchloraiose, giveni_p_A:_he_ al_C__DUia[w_i_inse_d.

The stomach could be perfused with copper sulfate (CuSOa) or physiological saline
through a catheter which was placed in the oesophagus and directed toward _e cardiac

portion of the stomach. Another catheter was placed in the pyloric portion of the stomach

through the duodenum as an outlet for the perfusate7

Before starting the experimental perfusion, the stomach was washed with isotonic saline.

Copper sulfate solutions (0.04% and 0.08%) and isotonic saline were used for the experimen-

tal peffusions. For each peffusion 4 ml of solution at 38°C were injected by syringe into the
stomach over a l-rain pe-riod. The-soluddffw-a_keip(in_-st0-macfi-_30 rn_. a}'ter which

time the stomach was flushed for 1 rain with isotonic saline. To stimulate the vestibular

apparatus, the right external auditory meatus was irrigated for 3-10 min wi.t) coldwater (5-
180C) and then flushed with warm water (34-35°C).

Afferent nerve activity was recorded from a nerve filament isolated from the peripheral
cut end of the gastric branch of the vagus nerve, or of the splanchnic nerve. Efferent nerve

activity was made from a filament gsNatedqrrom the central cut enc_oq_th_ ventral gasmc

branch of the vagus nerve or the gastric branch of the splanchnic nerve. Nerve activtty was

amplified by means of a condenser-coupled differential amplifier, and stored on magnetic
tape. Analysis of the nerve activity was perform_tier conversion olrraw data to standard

pulses by a window discriminator that distinguished the nerve discharges from the back-

ground noise. To monitor the time coutr._._._._._._._.,eof changes in neural activity the rate of neural

discharge was determined by a ratemeter with a reset time of 5 see. The output of this

ratemeter was displayed on a pen recorder. Normal animal body temperature was maintained
by m_ans of a heating pad. The ECG was monitored throughout the experiment.

rY

r
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Results and Discussion .:

The Effect of Copper Sulfate on the Afferent Activity, of the Gastric Branches of the Vagus

Nerve

The peffusion of 4 ml of two different concentrations (0.04% and 0.08%) of CuSO 4

solution provoked an increase in afferent activity of the gastric branch of the vagus nerve

(Niijima et al, 1987). After the onset of the perfusion with CaSO 4 the activity increased

gradually and the increase lasted until after flushing of the gastric canal with isotonic saline.

The stimulating effect of 0.08% solution of CuSO 4 was stronger than that of the 0.0a%
solution, and lasted for a longer period of time, as shown in the upper trace of Figure 1. With

VAGAL GASTRIC AFFERENTS, Rat
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0.o41,% C"S_ 4 008I__1%CuS04
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Fig. 1. Effect of gastric perfusion by 0.04% and 0.08% CuSO, solution and

physiological saline on the afferent discharge rate of a vagal gastric nerve filament

(from Niiiima et a/., 1987). Downward arrows show time of onset of perfusion.

Upward arrows show the end of rinsing with saline. Horizontal bars indicate the

duration of perfusion with CuSO 4 solution and physiological saline. (a): sample of

nerve activity taken at time indicated by arrow a, before perfusion with 0.08%

CuSO+;.(b): sample of nerve activity obtained at time indicated by arrow b, during

perfusion with 0.08% of CuSO 4.
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the 0.08% solution the increase in vagal activity lasted in genera/for more than 1 hour, even

though the stomach was flushed after 20 min of exposure to the CuSO,. The peak of activity
provoked by the CuSO, was reached alter perfusate had been flushed out of the stomach (Fig.
1, upper and lower trace). It is unlikely that these changes in neural activity resulted from
mechanical effects of the infusion of solution into the stomach, because the peffusion of 4 ml
of saline resulted in no noticeable change in discharge rate beyond the transient increase that
was observed at the onset of perfusion and flushing of CuSO, solutions and saline (Fig. 1,

lower ,,race).
Figure 2 shows the mean discharge rate in spikes/sac of five different preparations just

before (control), 20 rain a,fter the onset of 0.08% CuSO_ solution, and 30 rain after flushing
with saline. Those discharge rates are 6.-¢: 0.3 (S.E.M.), 13.4 _+1.8 (S.E.M.) and 18.8 '- 2.3
(S.E.M.) respectively. The difference between f'u'-ingrates obtained during the control period
and the period 20 rain after onset of perfusion, as well as between the control period and the

period 30 min alter flushing were statistically significant (Student's t-test).

VAGAL GASTRIC AFFERENTS

[mpuJses/sec

lo I

_1_

A B

N=5
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_J

A - 8 P < 0.02
:i

A-C :P:_-O:01 -'"_ '_ _ ...... <.-.
B --C N.S. _'J

:!!A;Sefore perfusion B;20min after onset _-_
C;30min after flush

Fig.2,Mean dischargerateofthegastricvagalafferantsbeforeA,20 rain...afterB ........'_i_
and30 rninafterrinsingC ofperfusionby0.08°/°CuSO( solution.(FromNiq,maet -

el.,1987.) ._
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The Effect of Copper Sulfate on the Afferent Activity of the Gastric Branches of the Splanchnic
Nerve

Figure 3 shows a typical change in the discharge rate of afferent fibers of the gastric

branch of the splanchnic nerve. Except for the transient increases at the time of the onset of

perfusion and rinsing, no remarkable change was found in the rate of afferent discharge

during perfusion with the 0.08% CuSO 4 solution for 30 rain or alter flushing out by saline.
These effects, in combination with those reported in the preceding section, indicate that the

gastric effects of CuSO a were mainly mediated through gastric vagal afferents but that

splanchnic afferent activity was not greatly altered by these stimuli.

SPLANCttNIC GASTRIC AFFERENTS, Rat

Gastric Stimulation by 0.08% CuSO 4

i0 min

Fig. 3. Effect of gastric perfusion by 0.08% CuSO, solution on the afferent discharge
rate of a splanchnio gastric nerve filament. Horizontal bar indicates the duration of
per'fusion with 0.08% solution.

It was established by Wang and Borison (195 I) that the effective emetic concentration

of CuSO 4 for oral administration was 0.08% in the dog and cat. The effect of intragastric

CuSO 4 on the firing rate of gastric alferents is consistent with this in that the 0.08% solution
produced a larger and more reliable change in the rate of firing than that produced by the
0.04% solution. " - _ "

The specific receptors mediating the gastric vagal afferent response to CuSO 4 have not
yet been identified, although several candidates exist. Mei (1985) has demonstrated the

existence of vagal chemoreceptors in the intestinal wall, while Iggo (1957) has suggested that

gastric pH receptors exist. Mei (1970) has also reported the existence of receptors in the

mucous membrane of the gastrointestinal wall. While any of these receptors might be

stimulated by CuSO 4 soluti0ns.the exact source of the stimulating effect of CuSO 4 on gastric
vagaI afferents is not known.
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The Effect of Caloric Stimulation oFestibular Apparatus and Gastric Stimulation by Copper
Sulfate on the Activi_ of the Vagal Gastric Efferent Nerve Fibers

As caloric stimuladon of the vestibular apparatus, and gastric stimulation by CuSO 4 can
cause the vomidng response in man ('Wang and Borrison, 1951;/vLano et al, 1988), a change

m efferent activity in the vagal gastric nerve by these stimuli can be expected. Recordings of
the efferent discharges were made from a ven_-al gastric branch of the vagus nerve.

The upper trace of Figure 4 shows the effect of caloric stimulation of the fight vestibular

apparatus on the rate of effe:'ent discharges in the vagal gastric nerve. An application of cold

wamr (10°C) on the right externa! meatus for 3 rain caused a clear suppression in the rate of
efferent discharge. The suppression continued even after the flushing of the meatus with

warm water (3a-35oc). It lasted about 17 rain after cessation of the cold stimulation. A nadir

was reachedabout I5 rain after the onset of cold stimulation in this particular experiment. The

lower trace of Figure 4 shows the effect of gastric stimulation by CuSO 4 and that ofcaioric
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Fig. 4. Effe_s of gastric peduslon with 0.0B% CuSO, solution and caloric stimulation
of the right vestibular apparatus on the efferent discharge rate of the gastric branch
of the vagus nerve. Vertical arrows in upper trace show time of onset and end of
caloric stimulationof the rightvestibular apparatus. First vertical arrow in lower trace

indicates time of onset of gastric perfusion with 0.08% CuSO, solution. Second and
third arrows show time of onset and end of caloric stimulation. Horizontal arrow
shows duration of gastric perfusion.
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stimulation on the vaga/gastric efferent activity. At first, gastric stimulation with 0.08%
CuSO 4 was applied, which caused a wave-like suppression in regal activity. About 8 min

after the onset of gastric stimulation, ca/one stimulation of the right vestibular apparatus with
17°C water was applied for 11 rain. This caloric stimulation caused a further stronger
suppression in discharge rate. A nadir of suppression was reached about 7 min after the onset

of caloric stimulation. As observed in the trace, the effects of gastric stimulation and caloric
stimulation appeared to summate, and the effect of caloric stimulation was apparently
stronger than that of gastric stimulation. Observations from two other preparations were
consistent with the results. No remarkable suppressive response was elicited by gastric
stimulation with 2% CuSO 4 (Fig. 5).
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Fig. 5. Effects of gastric per'fusion with 2% CuSO, solution, repetitive electrical
stimulation of the gastric vagus nerve and caloric stimulation of the right vestibular

apparatus on the efferent discharge rate of the gastric branch of the vagus nerve.

Vertical arrows in upper trace indicate time of onset of gastric perfusion with 2%
CuSO,, and time of onset and end of caloric stimulation. Horizontal arrow indicates

the duration of the gastric per'fusion. First vertical arrow in lower trace shows time of

electrical stimulation of the gastric branch of the vagus nerve, and second and third
arrows indicate time of onset and end of caloric stimulation.
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The lower trace ofFigure 5 shows the effect of electrical stimulation of the gastric vagus

nerve on the activity of the gastric vagal efferents. Two branches of the ventral gastric vagus
nerve were used after sectioning. A pair of stimulation e!ecu'odes were placed on the central

cut end of one branch, and recordings were made from the nerve filament dissected from the

central cut end of another branch. As shown in the trace, a repetitive stimulation (7 V, 0.5

msec, 50 Hz for 10 sac) caused a long lasting inhibition in the rate of effcrent discharge,

lasting about 12 rain. Caloric stimulation (12°C water) of the right vestibular apparatus for

3 rain also resulted in a suppression lasting approximately 20 rain.

The Effects of Caloric Stimulation of the Vestibular Apparatus and Gastric Stimulation by
Copper Sulfate on the Activity of the Splanchnic Gastric Efferent Nerve Fibers

The top trace of Figure 6 shows the effects of gasu-ic stimulation, as well as caloric

stimulation of the right vestibular apparatus, on the efferent discharge rate of the gastric

splanchnic nerve. These two stimulations for 5 rain resulted in a slight facilitation in efferent

discharge activity. The middle and lower traces show the effects of caloric stimulation for 5
rain in different preparations. Caloric stimulation with water (5°C) of the right vestibular

apparatus caused slight acceleration in splanchnic nerve activity in these two preparations.

These observations indi_te _at caloric stimulation of the vestibular apparatus as well

as gastric stimulation with CuSO._, r_ulted ina slightfacilitation of gastric splanchnic
efferent nerve activity.
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Fig. 6. Effects of gastric pedusion with 0.08",. CuSO, solut,on'and caloric stimula-

tion of the right vestibular apparatus on the efferent discharge rate of the gastric
branch of the splanchnic nerve. First horizontal bar on the top [race indicates time
of gastric perfusion and second bar shows time of caloric stimulation. Horizontal
bars on the middle and lower traces indicate time of catoric stimulations.
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The resultsoftheseexpcrimen_ can be summarized asfollows:thedifferenttypesof

stimulation,suchasgastricstimulationbyCuSO 4,repetitivestimulationofthegastricvagus "
nerveand caloricstimulationofvestibularapparatus,causedaninhibitioninefferentactivity

ofthegastricvagus nerveand a slightactivationof thesplanchnicgastriceffercnts.This

reporttherefore,providesevidenceforapossibleintegrativeinhibitoryfunctionofthevagal

gasr.riccenteraswellasa possibleexcitatoryfunctionof thegastricsyrnpathcticmotoneu-

rons,which may playa roleinspaceand motion sickness('Fig.7).

18°--5°C

ML

Fig. 7. Schematic illustration of the effects of gastric and vestibular stimulations on
the activities of vagal and splanchnic gastric efferent outflows. VGA, vagal gastric
afferents; VGE, vagal gastric efferents; SGE, splanchnic gastric efferents; $GA,
splanchnic gastric afferents; DMV, dorsal motor nucleus of the vagus;/ML, interme-
diotateral cell column (sympathetic preganglionic neuron group); Inh., inhibition;
Exc., excitation.
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Wang and Bomson (195I)reportedthatcompleteblockageoftheemeticresponseto

intragastricCuSO 4 requiredvagommy combined with sympathectomy,and furthersug-

gestedthatthegastricsplanchnicafferentpathway may playa roleintheemeticresponse.

However, our observationsindicamthatthechemicaleffectofgas_'icstimulationby CuSO 4
isnot mediatedby the gastricsplanchnicaffcren[sbut by thegastricvagalafferents.Itis

suggestedthattheeffectsofmechanicalstimulationsuchasdistensionofthegastricwall,can

be mediated by thcgasu-icsplanchnicaffcrentsand may play some roleinthe emetic

response.

Inrelationtoour observationofan increaseingastricsympatheticoutflowfollowing

caloricstimulationof thevestibularappaz'atus,Mano etal.(1988)reportedan increasein

musclesympatheticnerveactivity(MSA) tothegasn'ocncmius-solcusmuscleduc tocaloric

stimulationof thevestibularapparatusin man. These findingsmay suggestthegeneral

activationofthesympatheticsystemand inhibitionoftheparasympatheticsysteminspace

motion sickness(however,see Akertand Gemandt, 1962;Mcgirianand Manning, 1967;

Uchino etai.1970,forreportsofan oppositeeffectofvestibularstimulation).

References

I. Aken, K. and Gemandt, B.E. (1962). Neurophysiological study of vestibular and limbic

influences upon vagal out/low. Electroenceph. Clin. Neurophysiol.. 14,904-14.

2. Iggo, A. (1957). Gastric mucosal chemoreceptors with vagal afferent fibers in the cat.
Q. J. Exp. Physiol.. 42, 398-409.

3. Mano, T., Iwase, S., Saito, M., Koga, K., Abe, H., Inamura, K., Matsu.kawa, Y. and

Mashiba, M. (1988). Somatosensory-vestibular-sympathetic interactions in man under

weightlessness simulated by head-out water immersion. In LC. Hwang, N.G. Daunton

and VZ. Wilson ('Eds.), Basic andAppl&dAspects of Vestibular Function. Hong Kong:
Hong Kong University Press, pp. 193-203.

4. Megirian, D. and Manning, S.W. (1967). Input-outputrelations of the vestibular system.
Arch. ital. Biol.. 105, 15-30. _ _

5. Mei, N. (1970). Mecanorecepteurs vagaux digestifs chez le chat. Exp. Brain Res., I1,
50"2-14.

6. Mei, N. (1985). Intestinal chemosensitivity. PhysioL Rev., 65, 211-37.

7. Niijima, A.,Jiang Z.-Y., Daunton, N.G. and Fox, R.A. (1987). Effect of copper sulphate

on the rate of afferent discharge in the gastric branch of the vagus nerve in the rat.
Neurosci. Lett., 80, 71-7a

8. Uchino, Y., Kudo, N., Tsuda, IG and Iwamura, Y. (1970). Vestibular inhibition of
sympathetic nerve activities. Brain Res., 22, 195-206.

9. Wang, S.C. and Borrison, I--I.L. (1951). Copper sulphate emesis: A study of afferent

pathways from the gastrointestinal tract. Amer. J. PhysioL, 1265, 520-26.


